MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Grade 17 Titanium

5019 aluminum belongs to the aluminum alloys classification, while grade 17 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is grade 17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 2.2 to 18
27
Fatigue Strength, MPa 100 to 160
160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
38
Shear Strength, MPa 170 to 210
180
Tensile Strength: Ultimate (UTS), MPa 280 to 360
270
Tensile Strength: Yield (Proof), MPa 120 to 300
210

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 640
1660
Melting Onset (Solidus), °C 540
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 130
23
Thermal Expansion, µm/m-K 24
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 98
7.3

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 9.0
36
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
68
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 29 to 38
17
Strength to Weight: Bending, points 35 to 42
21
Thermal Diffusivity, mm2/s 52
9.3
Thermal Shock Resistance, points 13 to 16
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.2
99.015 to 99.96
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.4