MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Titanium 6-7

5019 aluminum belongs to the aluminum alloys classification, while titanium 6-7 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is titanium 6-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 2.2 to 18
11
Fatigue Strength, MPa 100 to 160
530
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Shear Strength, MPa 170 to 210
610
Tensile Strength: Ultimate (UTS), MPa 280 to 360
1020
Tensile Strength: Yield (Proof), MPa 120 to 300
900

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
300
Melting Completion (Liquidus), °C 640
1700
Melting Onset (Solidus), °C 540
1650
Specific Heat Capacity, J/kg-K 900
520
Thermal Expansion, µm/m-K 24
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
5.1
Embodied Carbon, kg CO2/kg material 9.0
34
Embodied Energy, MJ/kg 150
540
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
3460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
32
Strength to Weight: Axial, points 29 to 38
56
Strength to Weight: Bending, points 35 to 42
44
Thermal Shock Resistance, points 13 to 16
66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.3
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.0090
Iron (Fe), % 0 to 0.5
0 to 0.25
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0
Molybdenum (Mo), % 0
6.5 to 7.5
Niobium (Nb), % 0
6.5 to 7.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.4
0
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.2
84.9 to 88
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0