MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. C15000 Copper

5019 aluminum belongs to the aluminum alloys classification, while C15000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is C15000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 2.2 to 18
13 to 54
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 170 to 210
150 to 280
Tensile Strength: Ultimate (UTS), MPa 280 to 360
200 to 460
Tensile Strength: Yield (Proof), MPa 120 to 300
45 to 460

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 540
980
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
370
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
93
Electrical Conductivity: Equal Weight (Specific), % IACS 98
93

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
19 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
8.7 to 910
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 29 to 38
6.2 to 14
Strength to Weight: Bending, points 35 to 42
8.5 to 15
Thermal Diffusivity, mm2/s 52
110
Thermal Shock Resistance, points 13 to 16
7.3 to 17

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
99.8 to 99.9
Iron (Fe), % 0 to 0.5
0
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0.1 to 0.2
Residuals, % 0 to 0.15
0