MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. C72150 Copper-nickel

5019 aluminum belongs to the aluminum alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
150
Elongation at Break, % 2.2 to 18
29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
55
Shear Strength, MPa 170 to 210
320
Tensile Strength: Ultimate (UTS), MPa 280 to 360
490
Tensile Strength: Yield (Proof), MPa 120 to 300
210

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 640
1210
Melting Onset (Solidus), °C 540
1250
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 9.0
6.1
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
150
Stiffness to Weight: Axial, points 14
9.1
Stiffness to Weight: Bending, points 51
20
Strength to Weight: Axial, points 29 to 38
15
Strength to Weight: Bending, points 35 to 42
15
Thermal Diffusivity, mm2/s 52
6.0
Thermal Shock Resistance, points 13 to 16
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
52.5 to 57
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 0.050
Nickel (Ni), % 0
43 to 46
Silicon (Si), % 0 to 0.4
0 to 0.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.5