MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. S46500 Stainless Steel

5019 aluminum belongs to the aluminum alloys classification, while S46500 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is S46500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.2 to 18
2.3 to 14
Fatigue Strength, MPa 100 to 160
550 to 890
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 170 to 210
730 to 1120
Tensile Strength: Ultimate (UTS), MPa 280 to 360
1260 to 1930
Tensile Strength: Yield (Proof), MPa 120 to 300
1120 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
780
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
43 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 29 to 38
44 to 68
Strength to Weight: Bending, points 35 to 42
33 to 44
Thermal Shock Resistance, points 13 to 16
44 to 67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.2
11 to 12.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
72.6 to 76.1
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 0.25
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0
10.7 to 11.3
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
1.5 to 1.8
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants