MakeItFrom.com
Menu (ESC)

5019-H12 Aluminum vs. 5056-H12 Aluminum

Both 5019-H12 aluminum and 5056-H12 aluminum are aluminum alloys. Both are furnished in the H12 temper. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5019-H12 aluminum and the bottom bar is 5056-H12 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 9.0
7.2
Fatigue Strength, MPa 150
190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 180
210
Tensile Strength: Ultimate (UTS), MPa 310
350
Tensile Strength: Yield (Proof), MPa 210
260

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 540
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
29
Electrical Conductivity: Equal Weight (Specific), % IACS 98
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
23
Resilience: Unit (Modulus of Resilience), kJ/m3 310
490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 32
37
Strength to Weight: Bending, points 38
42
Thermal Diffusivity, mm2/s 52
53
Thermal Shock Resistance, points 14
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.3
93 to 95.4
Chromium (Cr), % 0 to 0.2
0.050 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 4.5 to 5.6
4.5 to 5.6
Manganese (Mn), % 0.1 to 0.6
0.050 to 0.2
Silicon (Si), % 0 to 0.4
0 to 0.3
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15