MakeItFrom.com
Menu (ESC)

5021 Aluminum vs. 6013 Aluminum

Both 5021 aluminum and 6013 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is 5021 aluminum and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 1.1 to 3.4
3.4 to 22
Fatigue Strength, MPa 85 to 110
98 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170
190 to 240
Tensile Strength: Ultimate (UTS), MPa 300 to 310
310 to 410
Tensile Strength: Yield (Proof), MPa 240 to 270
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
38
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.6
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 10
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 550
200 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 30 to 32
31 to 41
Strength to Weight: Bending, points 37
37 to 44
Thermal Diffusivity, mm2/s 57
60
Thermal Shock Resistance, points 13 to 14
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 97.7
94.8 to 97.8
Chromium (Cr), % 0 to 0.15
0 to 0.1
Copper (Cu), % 0 to 0.15
0.6 to 1.1
Iron (Fe), % 0 to 0.5
0 to 0.5
Magnesium (Mg), % 2.2 to 2.8
0.8 to 1.2
Manganese (Mn), % 0.1 to 0.5
0.2 to 0.8
Silicon (Si), % 0 to 0.4
0.6 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15