MakeItFrom.com
Menu (ESC)

5021-H38 Aluminum vs. 5457-H38 Aluminum

Both 5021-H38 aluminum and 5457-H38 aluminum are aluminum alloys. Both are furnished in the H38 temper. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5021-H38 aluminum and the bottom bar is 5457-H38 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 3.4
6.0
Fatigue Strength, MPa 110
89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170
130
Tensile Strength: Ultimate (UTS), MPa 300
210
Tensile Strength: Yield (Proof), MPa 240
190

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 590
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
180
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
46
Electrical Conductivity: Equal Weight (Specific), % IACS 120
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4
12
Resilience: Unit (Modulus of Resilience), kJ/m3 440
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 30
21
Strength to Weight: Bending, points 37
28
Thermal Diffusivity, mm2/s 57
72
Thermal Shock Resistance, points 13
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 97.7
97.8 to 99.05
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.1
Magnesium (Mg), % 2.2 to 2.8
0.8 to 1.2
Manganese (Mn), % 0.1 to 0.5
0.15 to 0.45
Silicon (Si), % 0 to 0.4
0 to 0.080
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.15
0 to 0.050
Residuals, % 0 to 0.15
0 to 0.1