MakeItFrom.com
Menu (ESC)

5021-H39 Aluminum vs. 5052-H39 Aluminum

Both 5021-H39 aluminum and 5052-H39 aluminum are aluminum alloys. Both are furnished in the H39 Temper. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5021-H39 aluminum and the bottom bar is 5052-H39 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.1
1.1
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170
180
Tensile Strength: Ultimate (UTS), MPa 310
320

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 590
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
35
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 10
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 550
41 to 590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 32
33
Strength to Weight: Bending, points 37
38
Thermal Diffusivity, mm2/s 57
57
Thermal Shock Resistance, points 14
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 97.7
95.8 to 97.7
Chromium (Cr), % 0 to 0.15
0.15 to 0.35
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 2.2 to 2.8
2.2 to 2.8
Manganese (Mn), % 0.1 to 0.5
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 0.25
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15