MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. EN 1.4859 Stainless Steel

5026 aluminum belongs to the aluminum alloys classification, while EN 1.4859 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.1 to 11
23
Fatigue Strength, MPa 94 to 140
140
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 260 to 320
490
Tensile Strength: Yield (Proof), MPa 120 to 250
210

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1050
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.9
6.2
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
91
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26 to 32
17
Strength to Weight: Bending, points 33 to 37
17
Thermal Diffusivity, mm2/s 52
3.4
Thermal Shock Resistance, points 11 to 14
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.3
19 to 21
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
40.3 to 49
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.55 to 1.4
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0