MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. EN 1.4913 Stainless Steel

5026 aluminum belongs to the aluminum alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.1 to 11
14 to 22
Fatigue Strength, MPa 94 to 140
320 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 150 to 180
550 to 590
Tensile Strength: Ultimate (UTS), MPa 260 to 320
870 to 980
Tensile Strength: Yield (Proof), MPa 120 to 250
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 210
700
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1150
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
600 to 1860
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26 to 32
31 to 35
Strength to Weight: Bending, points 33 to 37
26 to 28
Thermal Diffusivity, mm2/s 52
6.5
Thermal Shock Resistance, points 11 to 14
31 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.2 to 94.7
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.3
10 to 11.5
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
84.5 to 88.3
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.55 to 1.4
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0

Comparable Variants