MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. EN AC-41000 Aluminum

Both 5026 aluminum and EN AC-41000 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 5.1 to 11
4.5
Fatigue Strength, MPa 94 to 140
58 to 71
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 260 to 320
170 to 280
Tensile Strength: Yield (Proof), MPa 120 to 250
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 510
630
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
38
Electrical Conductivity: Equal Weight (Specific), % IACS 99
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.9
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
51
Strength to Weight: Axial, points 26 to 32
18 to 29
Strength to Weight: Bending, points 33 to 37
26 to 35
Thermal Diffusivity, mm2/s 52
69
Thermal Shock Resistance, points 11 to 14
7.8 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.2 to 94.7
95.2 to 97.6
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.1 to 0.8
0 to 0.1
Iron (Fe), % 0.2 to 1.0
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 3.9 to 4.9
0.45 to 0.65
Manganese (Mn), % 0.6 to 1.8
0.3 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0.55 to 1.4
1.6 to 2.4
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.050 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.1
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0 to 0.15