MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. Titanium 6-6-2

5026 aluminum belongs to the aluminum alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 5.1 to 11
6.7 to 9.0
Fatigue Strength, MPa 94 to 140
590 to 670
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
44
Shear Strength, MPa 150 to 180
670 to 800
Tensile Strength: Ultimate (UTS), MPa 260 to 320
1140 to 1370
Tensile Strength: Yield (Proof), MPa 120 to 250
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 210
310
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 510
1560
Specific Heat Capacity, J/kg-K 890
540
Thermal Conductivity, W/m-K 130
5.5
Thermal Expansion, µm/m-K 23
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.8
4.8
Embodied Carbon, kg CO2/kg material 8.9
29
Embodied Energy, MJ/kg 150
470
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
34
Strength to Weight: Axial, points 26 to 32
66 to 79
Strength to Weight: Bending, points 33 to 37
50 to 57
Thermal Diffusivity, mm2/s 52
2.1
Thermal Shock Resistance, points 11 to 14
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.2 to 94.7
5.0 to 6.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.1 to 0.8
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.2 to 1.0
0.35 to 1.0
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0.55 to 1.4
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.2
82.8 to 87.8
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants