MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. N08366 Stainless Steel

5026 aluminum belongs to the aluminum alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 5.1 to 11
34
Fatigue Strength, MPa 94 to 140
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 150 to 180
390
Tensile Strength: Ultimate (UTS), MPa 260 to 320
590
Tensile Strength: Yield (Proof), MPa 120 to 250
240

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.9
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
160
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26 to 32
20
Strength to Weight: Bending, points 33 to 37
19
Thermal Diffusivity, mm2/s 52
3.4
Thermal Shock Resistance, points 11 to 14
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0 to 0.3
20 to 22
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
42.4 to 50.5
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.55 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0