MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. S21460 Stainless Steel

5026 aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.1 to 11
46
Fatigue Strength, MPa 94 to 140
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 150 to 180
580
Tensile Strength: Ultimate (UTS), MPa 260 to 320
830
Tensile Strength: Yield (Proof), MPa 120 to 250
430

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 210
920
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 510
1330
Specific Heat Capacity, J/kg-K 890
480
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 8.9
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
320
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26 to 32
30
Strength to Weight: Bending, points 33 to 37
26
Thermal Shock Resistance, points 11 to 14
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.3
17 to 19
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 0.2 to 1.0
57.3 to 63.7
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.55 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0