MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. AZ61A Magnesium

5040 aluminum belongs to the aluminum alloys classification, while AZ61A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is AZ61A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
45
Elongation at Break, % 5.7 to 6.8
11
Fatigue Strength, MPa 100 to 130
130
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 140 to 150
150
Tensile Strength: Ultimate (UTS), MPa 240 to 260
280
Tensile Strength: Yield (Proof), MPa 190 to 230
170

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 600
530
Specific Heat Capacity, J/kg-K 900
990
Thermal Conductivity, W/m-K 160
79
Thermal Expansion, µm/m-K 23
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
12
Electrical Conductivity: Equal Weight (Specific), % IACS 130
62

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.8
1.7
Embodied Carbon, kg CO2/kg material 8.3
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
980

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
27
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
310
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
69
Strength to Weight: Axial, points 24 to 26
46
Strength to Weight: Bending, points 31 to 32
56
Thermal Diffusivity, mm2/s 64
47
Thermal Shock Resistance, points 10 to 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 98
5.5 to 7.2
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0 to 0.25
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.0050
Magnesium (Mg), % 1.0 to 1.5
90.3 to 93.9
Manganese (Mn), % 0.9 to 1.4
0.15 to 0.5
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.3
0 to 0.1
Zinc (Zn), % 0 to 0.25
0.4 to 1.5
Residuals, % 0 to 0.15
0 to 0.3