MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. EN AC-51200 Aluminum

Both 5040 aluminum and EN AC-51200 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 66 to 74
80
Elastic (Young's, Tensile) Modulus, GPa 70
67
Elongation at Break, % 5.7 to 6.8
1.1
Fatigue Strength, MPa 100 to 130
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 240 to 260
220
Tensile Strength: Yield (Proof), MPa 190 to 230
150

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 600
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 160
92
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
22
Electrical Conductivity: Equal Weight (Specific), % IACS 130
74

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.3
9.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 24 to 26
24
Strength to Weight: Bending, points 31 to 32
31
Thermal Diffusivity, mm2/s 64
39
Thermal Shock Resistance, points 10 to 11
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 98
84.5 to 92
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 1.0 to 1.5
8.0 to 10.5
Manganese (Mn), % 0.9 to 1.4
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.3
0 to 2.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15