MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. Grade 9 Titanium

5040 aluminum belongs to the aluminum alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 5.7 to 6.8
11 to 17
Fatigue Strength, MPa 100 to 130
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 140 to 150
430 to 580
Tensile Strength: Ultimate (UTS), MPa 240 to 260
700 to 960
Tensile Strength: Yield (Proof), MPa 190 to 230
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 650
1640
Melting Onset (Solidus), °C 600
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 160
8.1
Thermal Expansion, µm/m-K 23
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 8.3
36
Embodied Energy, MJ/kg 150
580
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 24 to 26
43 to 60
Strength to Weight: Bending, points 31 to 32
39 to 48
Thermal Diffusivity, mm2/s 64
3.3
Thermal Shock Resistance, points 10 to 11
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 98
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.25
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.3
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.4