MakeItFrom.com
Menu (ESC)

5040 Aluminum vs. R58150 Titanium

5040 aluminum belongs to the aluminum alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is 5040 aluminum and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 5.7 to 6.8
13
Fatigue Strength, MPa 100 to 130
330
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
52
Shear Strength, MPa 140 to 150
470
Tensile Strength: Ultimate (UTS), MPa 240 to 260
770
Tensile Strength: Yield (Proof), MPa 190 to 230
550

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
320
Melting Completion (Liquidus), °C 650
1760
Melting Onset (Solidus), °C 600
1700
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 23
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
48
Density, g/cm3 2.8
5.4
Embodied Carbon, kg CO2/kg material 8.3
31
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 15
94
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 380
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
32
Strength to Weight: Axial, points 24 to 26
40
Strength to Weight: Bending, points 31 to 32
35
Thermal Shock Resistance, points 10 to 11
48

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 98
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.1
Magnesium (Mg), % 1.0 to 1.5
0
Manganese (Mn), % 0.9 to 1.4
0
Molybdenum (Mo), % 0
14 to 16
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.3
0
Titanium (Ti), % 0
83.5 to 86
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0