MakeItFrom.com
Menu (ESC)

5049 Aluminum vs. R30155 Cobalt

5049 aluminum belongs to the aluminum alloys classification, while R30155 cobalt belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5049 aluminum and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
220
Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 2.0 to 18
34
Fatigue Strength, MPa 79 to 130
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 130 to 190
570
Tensile Strength: Ultimate (UTS), MPa 210 to 330
850
Tensile Strength: Yield (Proof), MPa 91 to 280
390

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.5
9.7
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 31
230
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 570
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 22 to 34
28
Strength to Weight: Bending, points 29 to 39
24
Thermal Diffusivity, mm2/s 56
3.2
Thermal Shock Resistance, points 9.3 to 15
21

Alloy Composition

Aluminum (Al), % 94.7 to 97.9
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0 to 0.3
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
24.3 to 36.2
Magnesium (Mg), % 1.6 to 2.5
0
Manganese (Mn), % 0.5 to 1.1
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0