MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. ASTM A387 Grade 22L Class 1

5050 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 22L class 1 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is ASTM A387 grade 22L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
150
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.7 to 22
20
Fatigue Strength, MPa 45 to 100
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 91 to 140
310
Tensile Strength: Ultimate (UTS), MPa 140 to 250
500
Tensile Strength: Yield (Proof), MPa 50 to 210
230

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.4
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1190
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
83
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 26
18
Strength to Weight: Bending, points 22 to 33
18
Thermal Diffusivity, mm2/s 79
11
Thermal Shock Resistance, points 6.3 to 11
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
2.0 to 2.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
95.2 to 96.8
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0