MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. Nickel 689

5050 aluminum belongs to the aluminum alloys classification, while nickel 689 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is nickel 689.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
350
Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.7 to 22
23
Fatigue Strength, MPa 45 to 100
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 91 to 140
790
Tensile Strength: Ultimate (UTS), MPa 140 to 250
1250
Tensile Strength: Yield (Proof), MPa 50 to 210
690

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 630
1390
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.4
11
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
240
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
1170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 15 to 26
41
Strength to Weight: Bending, points 22 to 33
30
Thermal Shock Resistance, points 6.3 to 11
35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.3 to 98.9
0.75 to 1.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0 to 0.1
18 to 20
Cobalt (Co), % 0
9.0 to 11
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
0 to 5.0
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
48.3 to 60.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0