MakeItFrom.com
Menu (ESC)

5051A Aluminum vs. SAE-AISI 1548 Steel

5051A aluminum belongs to the aluminum alloys classification, while SAE-AISI 1548 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5051A aluminum and the bottom bar is SAE-AISI 1548 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 18 to 21
11 to 16
Fatigue Strength, MPa 51 to 61
270 to 430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 110
440 to 500
Tensile Strength: Ultimate (UTS), MPa 170
730 to 830
Tensile Strength: Yield (Proof), MPa 56
420 to 690

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1190
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 27
79 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 23
470 to 1280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 17 to 18
26 to 30
Strength to Weight: Bending, points 25
23 to 25
Thermal Diffusivity, mm2/s 63
14
Thermal Shock Resistance, points 7.6
23 to 27

Alloy Composition

Aluminum (Al), % 96.1 to 98.6
0
Carbon (C), % 0
0.44 to 0.52
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.45
98 to 98.5
Magnesium (Mg), % 1.4 to 2.1
0
Manganese (Mn), % 0 to 0.25
1.1 to 1.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0