MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. 518.0 Aluminum

Both 5052 aluminum and 518.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
80
Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 1.1 to 22
5.0
Fatigue Strength, MPa 66 to 140
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 120 to 180
200
Tensile Strength: Ultimate (UTS), MPa 190 to 320
310
Tensile Strength: Yield (Proof), MPa 75 to 280
190

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
98
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
24
Electrical Conductivity: Equal Weight (Specific), % IACS 120
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
9.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
14
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 19 to 33
32
Strength to Weight: Bending, points 27 to 38
38
Thermal Diffusivity, mm2/s 57
40
Thermal Shock Resistance, points 8.3 to 14
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.8 to 97.7
88.1 to 92.5
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.4
0 to 1.8
Magnesium (Mg), % 2.2 to 2.8
7.5 to 8.5
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0 to 0.25
0 to 0.35
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.25