MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. EN 2.4680 Cast Nickel

5052 aluminum belongs to the aluminum alloys classification, while EN 2.4680 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is EN 2.4680 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 22
9.1
Fatigue Strength, MPa 66 to 140
120
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 190 to 320
600
Tensile Strength: Yield (Proof), MPa 75 to 280
260

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
1050
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 610
1320
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.6
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1190
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
45
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 19 to 33
21
Strength to Weight: Bending, points 27 to 38
20
Thermal Diffusivity, mm2/s 57
3.7
Thermal Shock Resistance, points 8.3 to 14
14

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.15 to 0.35
48 to 52
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
0 to 1.0
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
42.9 to 51
Niobium (Nb), % 0
1.0 to 1.8
Nitrogen (N), % 0
0 to 0.16
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0