MakeItFrom.com
Menu (ESC)

5052-H26 Aluminum vs. 5251-H26 Aluminum

Both 5052-H26 aluminum and 5251-H26 aluminum are aluminum alloys. Both are furnished in the H26 temper. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5052-H26 aluminum and the bottom bar is 5251-H26 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 74
69
Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 3.8
5.6
Fatigue Strength, MPa 120
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 160
140
Tensile Strength: Ultimate (UTS), MPa 270
240
Tensile Strength: Yield (Proof), MPa 220
200

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 610
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
37
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7
13
Resilience: Unit (Modulus of Resilience), kJ/m3 360
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 28
25
Strength to Weight: Bending, points 35
32
Thermal Diffusivity, mm2/s 57
61
Thermal Shock Resistance, points 12
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.8 to 97.7
95.5 to 98.2
Chromium (Cr), % 0.15 to 0.35
0 to 0.15
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 2.2 to 2.8
1.7 to 2.4
Manganese (Mn), % 0 to 0.1
0.1 to 0.5
Silicon (Si), % 0 to 0.25
0 to 0.4
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.15