MakeItFrom.com
Menu (ESC)

5052-O Aluminum vs. A356.0 Aluminum

Both 5052-O aluminum and A356.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5052-O aluminum and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 22
3.0 to 6.0
Fatigue Strength, MPa 110
50 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 190
160 to 270
Tensile Strength: Yield (Proof), MPa 79
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 610
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.6
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 46
49 to 300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 20
17 to 29
Strength to Weight: Bending, points 28
25 to 36
Thermal Diffusivity, m2/s 57
64
Thermal Shock Resistance, points 8.5
7.6 to 13

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
91.1 to 93.3
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 0.2
Magnesium (Mg), % 2.2 to 2.8
0.25 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 0 to 0.25
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15