MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. AISI 302 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
4.5 to 46
Fatigue Strength, MPa 140 to 200
210 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 170 to 240
400 to 830
Tensile Strength: Ultimate (UTS), MPa 290 to 460
580 to 1430
Tensile Strength: Yield (Proof), MPa 150 to 410
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
710
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Calomel Potential, mV -780
-70
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
3.0
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
140 to 3070
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
21 to 51
Strength to Weight: Bending, points 36 to 50
20 to 36
Thermal Diffusivity, mm2/s 53
4.4
Thermal Shock Resistance, points 13 to 20
12 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.050 to 0.2
17 to 19
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
67.9 to 75
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants