MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. C443.0 Aluminum

Both 5056 aluminum and C443.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 4.9 to 31
9.0
Fatigue Strength, MPa 140 to 200
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Shear Strength, MPa 170 to 240
130
Tensile Strength: Ultimate (UTS), MPa 290 to 460
230
Tensile Strength: Yield (Proof), MPa 150 to 410
100

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
37
Electrical Conductivity: Equal Weight (Specific), % IACS 99
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
17
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 30 to 48
24
Strength to Weight: Bending, points 36 to 50
31
Thermal Diffusivity, mm2/s 53
58
Thermal Shock Resistance, points 13 to 20
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
89.6 to 95.5
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0 to 0.4
0 to 2.0
Magnesium (Mg), % 4.5 to 5.6
0 to 0.1
Manganese (Mn), % 0.050 to 0.2
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.3
4.5 to 6.0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.25