MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN 1.3967 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while EN 1.3967 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN 1.3967 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
22
Fatigue Strength, MPa 140 to 200
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 290 to 460
690
Tensile Strength: Yield (Proof), MPa 150 to 410
350

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1070
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 910
470
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
4.8
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
24
Strength to Weight: Bending, points 36 to 50
22
Thermal Shock Resistance, points 13 to 20
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.2
20 to 21.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
50.3 to 57.8
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
4.0 to 6.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
15 to 17
Niobium (Nb), % 0
0 to 0.25
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0