MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN AC-43300 Aluminum

Both 5056 aluminum and EN AC-43300 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 4.9 to 31
3.4 to 6.7
Fatigue Strength, MPa 140 to 200
76 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 290 to 460
280 to 290
Tensile Strength: Yield (Proof), MPa 150 to 410
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 910
910
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
40
Electrical Conductivity: Equal Weight (Specific), % IACS 99
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 9.0
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
54
Strength to Weight: Axial, points 30 to 48
31 to 32
Strength to Weight: Bending, points 36 to 50
37 to 38
Thermal Diffusivity, mm2/s 53
59
Thermal Shock Resistance, points 13 to 20
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
88.9 to 90.8
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.4
0 to 0.19
Magnesium (Mg), % 4.5 to 5.6
0.25 to 0.45
Manganese (Mn), % 0.050 to 0.2
0 to 0.1
Silicon (Si), % 0 to 0.3
9.0 to 10
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1