MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. G-CoCr28 Cobalt

5056 aluminum belongs to the aluminum alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 4.9 to 31
6.7
Fatigue Strength, MPa 140 to 200
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
83
Tensile Strength: Ultimate (UTS), MPa 290 to 460
560
Tensile Strength: Yield (Proof), MPa 150 to 410
260

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1200
Melting Completion (Liquidus), °C 640
1330
Melting Onset (Solidus), °C 570
1270
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
8.5
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
100
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.0
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1180
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
31
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 48
19
Strength to Weight: Bending, points 36 to 50
19
Thermal Diffusivity, mm2/s 53
2.2
Thermal Shock Resistance, points 13 to 20
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0.050 to 0.2
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
9.7 to 24.5
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0