MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. Grade 18 Titanium

5056 aluminum belongs to the aluminum alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 4.9 to 31
11 to 17
Fatigue Strength, MPa 140 to 200
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
40
Shear Strength, MPa 170 to 240
420 to 590
Tensile Strength: Ultimate (UTS), MPa 290 to 460
690 to 980
Tensile Strength: Yield (Proof), MPa 150 to 410
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 640
1640
Melting Onset (Solidus), °C 570
1590
Specific Heat Capacity, J/kg-K 910
550
Thermal Conductivity, W/m-K 130
8.3
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 9.0
41
Embodied Energy, MJ/kg 150
670
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 30 to 48
43 to 61
Strength to Weight: Bending, points 36 to 50
39 to 49
Thermal Diffusivity, mm2/s 53
3.4
Thermal Shock Resistance, points 13 to 20
47 to 67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.25
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.3
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants