MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. N08135 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
46
Fatigue Strength, MPa 140 to 200
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Shear Strength, MPa 170 to 240
400
Tensile Strength: Ultimate (UTS), MPa 290 to 460
570
Tensile Strength: Yield (Proof), MPa 150 to 410
240

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 910
460
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 9.0
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 48
19
Strength to Weight: Bending, points 36 to 50
19
Thermal Shock Resistance, points 13 to 20
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.2
20.5 to 23.5
Copper (Cu), % 0 to 0.1
0 to 0.7
Iron (Fe), % 0 to 0.4
30.2 to 42.3
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0