MakeItFrom.com
Menu (ESC)

5056-H111 Aluminum vs. 6101-H111 Aluminum

Both 5056-H111 aluminum and 6101-H111 aluminum are aluminum alloys. Both are furnished in the H111 temper. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5056-H111 aluminum and the bottom bar is 6101-H111 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
68
Elongation at Break, % 14
25
Fatigue Strength, MPa 140
71
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Shear Strength, MPa 210
61
Tensile Strength: Ultimate (UTS), MPa 340
95
Tensile Strength: Yield (Proof), MPa 170
75

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 570
620
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
220
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
57
Electrical Conductivity: Equal Weight (Specific), % IACS 99
190

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
22
Resilience: Unit (Modulus of Resilience), kJ/m3 200
41
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 36
9.8
Strength to Weight: Bending, points 41
17
Thermal Diffusivity, mm2/s 53
89
Thermal Shock Resistance, points 15
4.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
97.6 to 99.4
Boron (B), % 0
0 to 0.060
Chromium (Cr), % 0.050 to 0.2
0 to 0.030
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 4.5 to 5.6
0.35 to 0.8
Manganese (Mn), % 0.050 to 0.2
0 to 0.030
Silicon (Si), % 0 to 0.3
0.3 to 0.7
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.1