MakeItFrom.com
Menu (ESC)

5056-O Aluminum vs. EN 1.7220 +A Steel

5056-O aluminum belongs to the aluminum alloys classification, while EN 1.7220 +A steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056-O aluminum and the bottom bar is EN 1.7220 +A steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
190
Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 31
21
Fatigue Strength, MPa 140
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 170
400
Tensile Strength: Ultimate (UTS), MPa 290
640
Tensile Strength: Yield (Proof), MPa 150
440

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30
23
Strength to Weight: Bending, points 36
21
Thermal Diffusivity, mm2/s 53
12
Thermal Shock Resistance, points 13
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0.3 to 0.37
Chromium (Cr), % 0.050 to 0.2
0.9 to 1.2
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
96.8 to 98.1
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0.6 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0