MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. A413.0 Aluminum

Both 5059 aluminum and A413.0 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 11 to 25
3.5
Fatigue Strength, MPa 170 to 240
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 220 to 250
170
Tensile Strength: Ultimate (UTS), MPa 350 to 410
240
Tensile Strength: Yield (Proof), MPa 170 to 300
130

Thermal Properties

Latent Heat of Fusion, J/g 390
570
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 510
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
31
Electrical Conductivity: Equal Weight (Specific), % IACS 95
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 9.1
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1160
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
120
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 36 to 42
25
Strength to Weight: Bending, points 41 to 45
33
Thermal Diffusivity, mm2/s 44
52
Thermal Shock Resistance, points 16 to 18
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.9 to 94
82.9 to 89
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.25
0 to 1.0
Iron (Fe), % 0 to 0.5
0 to 1.3
Magnesium (Mg), % 5.0 to 6.0
0 to 0.1
Manganese (Mn), % 0.6 to 1.2
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.45
11 to 13
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0 to 0.5
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.25