MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. EN 1.4859 Stainless Steel

5059 aluminum belongs to the aluminum alloys classification, while EN 1.4859 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
23
Fatigue Strength, MPa 170 to 240
140
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 350 to 410
490
Tensile Strength: Yield (Proof), MPa 170 to 300
210

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Corrosion, °C 65
560
Maximum Temperature: Mechanical, °C 210
1050
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.1
6.2
Embodied Energy, MJ/kg 160
88
Embodied Water, L/kg 1160
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
91
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 42
17
Strength to Weight: Bending, points 41 to 45
17
Thermal Diffusivity, mm2/s 44
3.4
Thermal Shock Resistance, points 16 to 18
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.25
19 to 21
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
40.3 to 49
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0