MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. Grade 20 Titanium

5059 aluminum belongs to the aluminum alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 11 to 25
5.7 to 17
Fatigue Strength, MPa 170 to 240
550 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
47
Shear Strength, MPa 220 to 250
560 to 740
Tensile Strength: Ultimate (UTS), MPa 350 to 410
900 to 1270
Tensile Strength: Yield (Proof), MPa 170 to 300
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 210
370
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 510
1600
Specific Heat Capacity, J/kg-K 900
520
Thermal Expansion, µm/m-K 24
9.6

Otherwise Unclassified Properties

Density, g/cm3 2.7
5.0
Embodied Carbon, kg CO2/kg material 9.1
52
Embodied Energy, MJ/kg 160
860
Embodied Water, L/kg 1160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
2940 to 5760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
33
Strength to Weight: Axial, points 36 to 42
50 to 70
Strength to Weight: Bending, points 41 to 45
41 to 52
Thermal Shock Resistance, points 16 to 18
55 to 77

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.9 to 94
3.0 to 4.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.25
5.5 to 6.5
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 0.5
0 to 0.3
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.45
0
Titanium (Ti), % 0 to 0.2
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
3.5 to 4.5
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants