MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. Grade 9 Titanium

5059 aluminum belongs to the aluminum alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 11 to 25
11 to 17
Fatigue Strength, MPa 170 to 240
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 220 to 250
430 to 580
Tensile Strength: Ultimate (UTS), MPa 350 to 410
700 to 960
Tensile Strength: Yield (Proof), MPa 170 to 300
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 210
330
Melting Completion (Liquidus), °C 650
1640
Melting Onset (Solidus), °C 510
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 110
8.1
Thermal Expansion, µm/m-K 24
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 9.1
36
Embodied Energy, MJ/kg 160
580
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 36 to 42
43 to 60
Strength to Weight: Bending, points 41 to 45
39 to 48
Thermal Diffusivity, mm2/s 44
3.3
Thermal Shock Resistance, points 16 to 18
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.9 to 94
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.25
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.45
0
Titanium (Ti), % 0 to 0.2
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants