MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. Nickel 686

5059 aluminum belongs to the aluminum alloys classification, while nickel 686 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 11 to 25
51
Fatigue Strength, MPa 170 to 240
410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 220 to 250
560
Tensile Strength: Ultimate (UTS), MPa 350 to 410
780
Tensile Strength: Yield (Proof), MPa 170 to 300
350

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 510
1340
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 110
9.8
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 9.1
12
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 1160
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
320
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 36 to 42
24
Strength to Weight: Bending, points 41 to 45
21
Thermal Diffusivity, mm2/s 44
2.6
Thermal Shock Resistance, points 16 to 18
21

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.25
19 to 23
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
0 to 5.0
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0