MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. R30816 Cobalt

5059 aluminum belongs to the aluminum alloys classification, while R30816 cobalt belongs to the cobalt alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is R30816 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 11 to 25
23
Fatigue Strength, MPa 170 to 240
250
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
81
Tensile Strength: Ultimate (UTS), MPa 350 to 410
1020
Tensile Strength: Yield (Proof), MPa 170 to 300
460

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 650
1540
Melting Onset (Solidus), °C 510
1460
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 9.1
20
Embodied Energy, MJ/kg 160
320
Embodied Water, L/kg 1160
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
190
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 36 to 42
31
Strength to Weight: Bending, points 41 to 45
25
Thermal Diffusivity, mm2/s 44
3.3
Thermal Shock Resistance, points 16 to 18
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0.32 to 0.42
Chromium (Cr), % 0 to 0.25
19 to 21
Cobalt (Co), % 0
40 to 49.8
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
0 to 5.0
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
1.0 to 2.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
3.5 to 4.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
3.5 to 4.5
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
3.5 to 4.5
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0