MakeItFrom.com
Menu (ESC)

5059-O Aluminum vs. Annealed AISI 440C

5059-O aluminum belongs to the aluminum alloys classification, while annealed AISI 440C belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059-O aluminum and the bottom bar is annealed AISI 440C.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 25
14
Fatigue Strength, MPa 200
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 230
430
Tensile Strength: Ultimate (UTS), MPa 360
710
Tensile Strength: Yield (Proof), MPa 170
450

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Corrosion, °C 65
390
Maximum Temperature: Mechanical, °C 210
870
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 110
22
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.1
2.2
Embodied Energy, MJ/kg 160
31
Embodied Water, L/kg 1160
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
88
Resilience: Unit (Modulus of Resilience), kJ/m3 220
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36
26
Strength to Weight: Bending, points 41
23
Thermal Diffusivity, mm2/s 44
6.0
Thermal Shock Resistance, points 16
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0 to 0.25
16 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
78 to 83.1
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0