MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. 392.0 Aluminum

Both 5070 aluminum and 392.0 aluminum are aluminum alloys. They have 80% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is 392.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
75
Elongation at Break, % 20
0.86
Fatigue Strength, MPa 150
190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 300
290
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 390
670
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
670
Melting Onset (Solidus), °C 550
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
25
Electrical Conductivity: Equal Weight (Specific), % IACS 100
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 8.8
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
2.4
Resilience: Unit (Modulus of Resilience), kJ/m3 150
490
Stiffness to Weight: Axial, points 14
17
Stiffness to Weight: Bending, points 50
56
Strength to Weight: Axial, points 31
32
Strength to Weight: Bending, points 37
39
Thermal Diffusivity, mm2/s 53
60
Thermal Shock Resistance, points 14
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.7
73.9 to 80.6
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0.4 to 0.8
Iron (Fe), % 0 to 0.4
0 to 1.5
Magnesium (Mg), % 3.5 to 4.5
0.8 to 1.2
Manganese (Mn), % 0.4 to 0.8
0.2 to 0.6
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.25
18 to 20
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0.4 to 0.8
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.5