MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. 5050 Aluminum

Both 5070 aluminum and 5050 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is 5050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 20
1.7 to 22
Fatigue Strength, MPa 150
45 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190
91 to 140
Tensile Strength: Ultimate (UTS), MPa 300
140 to 250
Tensile Strength: Yield (Proof), MPa 140
50 to 210

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 550
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
50
Electrical Conductivity: Equal Weight (Specific), % IACS 100
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
4.1 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 150
18 to 330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 31
15 to 26
Strength to Weight: Bending, points 37
22 to 33
Thermal Diffusivity, mm2/s 53
79
Thermal Shock Resistance, points 14
6.3 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.7
96.3 to 98.9
Chromium (Cr), % 0 to 0.3
0 to 0.1
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 3.5 to 4.5
1.1 to 1.8
Manganese (Mn), % 0.4 to 0.8
0 to 0.1
Silicon (Si), % 0 to 0.25
0 to 0.4
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0.4 to 0.8
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15