MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. 6008 Aluminum

Both 5070 aluminum and 6008 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 20
9.1 to 17
Fatigue Strength, MPa 150
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190
120 to 170
Tensile Strength: Ultimate (UTS), MPa 300
200 to 290
Tensile Strength: Yield (Proof), MPa 140
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 550
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
49
Electrical Conductivity: Equal Weight (Specific), % IACS 100
160

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.5
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 150
76 to 360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 31
21 to 29
Strength to Weight: Bending, points 37
28 to 35
Thermal Diffusivity, mm2/s 53
77
Thermal Shock Resistance, points 14
9.0 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.7
96.5 to 99.1
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.4
0 to 0.35
Magnesium (Mg), % 3.5 to 4.5
0.4 to 0.7
Manganese (Mn), % 0.4 to 0.8
0 to 0.3
Silicon (Si), % 0 to 0.25
0.5 to 0.9
Titanium (Ti), % 0 to 0.15
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0.4 to 0.8
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15