MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. AWS E240

5070 aluminum belongs to the aluminum alloys classification, while AWS E240 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is AWS E240.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 20
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 300
770

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 550
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
3.0
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1170
160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 31
28
Strength to Weight: Bending, points 37
24
Thermal Diffusivity, mm2/s 53
3.9
Thermal Shock Resistance, points 14
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.7
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.3
17 to 19
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 0 to 0.4
58.6 to 68.4
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.4 to 0.8
10.5 to 13.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0.4 to 0.8
0
Residuals, % 0 to 0.15
0