MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. EN AC-46200 Aluminum

Both 5070 aluminum and EN AC-46200 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 20
1.1
Fatigue Strength, MPa 150
87
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 300
210
Tensile Strength: Yield (Proof), MPa 140
130

Thermal Properties

Latent Heat of Fusion, J/g 390
510
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 550
540
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
28
Electrical Conductivity: Equal Weight (Specific), % IACS 100
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.8
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 150
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 37
28
Thermal Diffusivity, mm2/s 53
44
Thermal Shock Resistance, points 14
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.7
82.6 to 90.3
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
2.0 to 3.5
Iron (Fe), % 0 to 0.4
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 3.5 to 4.5
0.050 to 0.55
Manganese (Mn), % 0.4 to 0.8
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.25
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0.4 to 0.8
0 to 1.2
Residuals, % 0 to 0.15
0 to 0.25