MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. Grade 5 Titanium

5070 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 20
8.6 to 11
Fatigue Strength, MPa 150
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 190
600 to 710
Tensile Strength: Ultimate (UTS), MPa 300
1000 to 1190
Tensile Strength: Yield (Proof), MPa 140
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 550
1650
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 130
6.8
Thermal Expansion, µm/m-K 24
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 8.8
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 31
62 to 75
Strength to Weight: Bending, points 37
50 to 56
Thermal Diffusivity, mm2/s 53
2.7
Thermal Shock Resistance, points 14
76 to 91

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.7
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.4
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.4 to 0.8
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.15
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0.4 to 0.8
0
Residuals, % 0 to 0.15
0 to 0.4