MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. Nickel 617

5070 aluminum belongs to the aluminum alloys classification, while nickel 617 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 20
40
Fatigue Strength, MPa 150
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 190
510
Tensile Strength: Ultimate (UTS), MPa 300
740
Tensile Strength: Yield (Proof), MPa 140
280

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.8
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
230
Resilience: Unit (Modulus of Resilience), kJ/m3 150
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 37
21
Thermal Diffusivity, mm2/s 53
3.5
Thermal Shock Resistance, points 14
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.7
0.8 to 1.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.3
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.4
0 to 3.0
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0.4 to 0.8
0
Residuals, % 0 to 0.15
0